- We randomly read an extra byte from random streams in various GenerateKey functions (which are not marked like the ones in OP) with MaybeReadByte [2] to avoid having our algorithm locked in
- Just yesterday someone reported that a private ECDSA key with a nil public key used to work, and now it doesn't, so we probably have to make it work again [3]
- Iterating over a map uses a randomized order to avoid exposing the internals
- The output of rand.Rand is considered part of the compatibility promise, so we had to go to great lengths to improve it [4]
- We discuss all the time what commitments to make in docs and what behaviors to disclaim, knowing we can never change something documented and probably something that's not explicitly documented as "this may change" [6]
[1]: https://go.dev/doc/go1compat
[2]: https://pkg.go.dev/crypto/internal/randutil#MaybeReadByte
[3]: https://go.dev/issue/70468
[4]: https://go.dev/blog/randv2
[5]: https://go.dev/blog/chacha8rand
[6]: https://go-review.googlesource.com/c/go/+/598336/comment/5d6...
Yep, welcome to my life.
I would add as a slight caveat that to benefit from this policy, users absolutely must read the release notes on major go versions before upgrading. We recently didn't, and we were burnt somewhat by the change to disallow negative serial numbers in the x509 parser without enabling the new feature flag. Completely our fault and not yours, but I add the caveat nevertheless.
I've been meaning to write a "how to safely update Go" post for a while, because the GODEBUG mechanism is very powerful but not well-known and we could build a bit of tooling around it.
In short, you can upgrade your toolchain without changing the go.mod version, and these things will keep working like they did, and set a metric every time the behavior would have changed, but didn't. (Here's where we could build a bit of tooling to check that metric in prod/tests/CLIs more easily.) Then you can update the go.mod version, which updates the default set of GODEBUGs, and if anything breaks, try reverting GODEBUGs one by one.
Breaking changes in major version updates is a completely normal thing in most software and we usually check for it. Ironically the only reason we weren't previously bothering in go is that the maintainers were historically so hyper-focused on absolute backwards compatibility that there were never any breaking changes!
More generally: Don't produce code where consumers of your API are the least bit inclined to rely on non-technical strings. Instead use first-level language constructs like predefined error values, types or even constants that contain the non-technical string so that API consumers can compare the return value againnst the constant instead of hard-coding the contained string themselves.
Hyrum's Law is definitely a thing, but its effects can be mitigated.
[1]: https://thomas-guettler.de/go/wrapping-and-sentinel-errors
The whole point of Hyrum's Law is that it doesn't matter how well you design your API: no matter what, people will depend on its behavior rather than its contract.
EDIT.
I think I found the source: https://www.rfc-editor.org/rfc/rfc9000#section-17.2.1
> The value in the Unused field is set to an arbitrary value by the server. Clients MUST ignore the value of this field. [...] Note that other versions of QUIC might not make a similar recommendation.
I think they call it "greasing", to prevent "ossification".
https://learn.microsoft.com/en-us/dotnet/csharp/language-ref...
Returning non-specific exceptions is virtually encouraged by the standard library (if you return an error struct, you run into major issues with the ubiquitous `if err != nil` "error handling" logic). You have both errors.New() and fmt.Errorf() for returning stringly-typed errors. errors.Is and errors.As only work easily if you return error constants, not error types (they can support error types, but then you have to do more work to manually implement Is() and As() in your custom error type) - so you can't easily both have a specific error, but also include extra information with that error.
For the example in the OP, you have to do a lot of extra work to return an error that can be checked without string comparisons, but also tells you what was the actual limit. So much work that this was only introduced in Go 1.19, despite MaxBytesReader existing since go 1.0 . Before that, it simply returned errors.New("http: request body too large") [0].
And this is true throughout the standard library. Despite all of their talk about the importance of handling errors, Go's standard library was full of stringly-typed errors for most of its lifetime, and while it's getting better, it's still a common occurrence. And even when they were at least using sentinel errors, they rarely included any kind of machine-readable context you could use for taking a decision based on the error value.
[0] https://cs.opensource.google/go/go/+/refs/tags/go1:src/pkg/n...
In other statically typed languages, you can do things like 'match err' and have the compiler tell you if you handled all the variants. In java you can `try { x } catch (SomeTypedException)` and have the compiler tell you if you missed any checked exceptions.
In go, you have to read the recursive call stack of the entire function you called to know if a certain error type is returned.
Can 'pgx.Connect' return an `io.EOF` error? Can it return a "tls: unknown certificate authority" (unexported string only error)?
The only way to know is to recursively read every line of code `pgx.Connect` calls and take note of every returned error.
In other languages, it's part of the type-signature.
Go doesn't have _useful_ typed errors since idiomatically they're type-erased into 'error' the second they're returned up from any method.
Should an unexpected error propagate from deep down in your call stack to your current call site, do you really think that error should be handled at this specific call-site?
https://docs.python.org/3/library/exceptions.html#concrete-e...
and standard about exception type hierarchy
https://github.com/psycopg/psycopg/blob/d38cf7798b0c602ff43d...
https://peps.python.org/pep-0249/#exceptions
Also in most languages "catch Exception:" (or similar expression) is considered a bad style. People are taught to catch specific exceptions. Nothing like that happens in Go.
https://github.com/golang/go/pull/49359/files
Before that, doing a string compare was basically the only way to detect that specific error. That was definitely an omission on the part of the original authors of the stdlib code; I don't it should be classified as "Hyrum's Law".
(just kidding, they're not mediocre, but they're not infallible or perfect either)
However, in this specific instance, even if the text cannot be changed, couldn't the error itself in the server be processed and signaled differently, eg. by returning a Status Code 413[1], since clients ought to recognize that status code anyway?
[1]: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/413
If you maintain a widely use Free Software library, please consider avoiding breaking changes when possible.
I'm not going to imply you have any obligation to do so, but your users will appreciate it.
Windows 95 changed that, and so one of the compatibility shims it got is that the allocator had a 3.x adjacent mode, which would be turned on when running SimCity (and probably other similarly misbehaving software as well).
Nowadays this is formalised in the compatibility engine (dating back to windows do), which can enable special modes or compatibility shims for applications (windows admins trying to run legacy or unmaintained applications can manage the application of compatibility modes via the “compatibility administrator”).
Jon Ross, who wrote the original version of SimCity for Windows 3.x, told me that he accidentally left a bug in SimCity where he read memory that he had just freed. Yep. It worked fine on Windows 3.x, because the memory never went anywhere. Here’s the amazing part: On beta versions of Windows 95, SimCity wasn’t working in testing. Microsoft tracked down the bug and added specific code to Windows 95 that looks for SimCity. If it finds SimCity running, it runs the memory allocator in a special mode that doesn’t free memory right away. That’s the kind of obsession with backward compatibility that made people willing to upgrade to Windows 95.
One of the SRE practices is breaking your service on purpose to bring the actual service level closer to what is promised and supported.
Yikes. this kind of defensive posture with respect to Hyrum's law is extreme and absurd. Per Hyrum's Law everything is potentially relied upon by someone, keeping stuff that may be relied upon means you cannot change anything (see this infamous xkcd on this[1])!
Thinking that no change is acceptable at all isn't the right take-away from Hyrum's Law: instead you should be ready to have to roll back changes that break people's workflow even when you didn't expected the change to break anything (and it also means that you need to have a way for your users to communicate their issues to you, which definitely isn't something Google is well-known for …).
1 - Lang/OS/Lib developer puts out a quirky or buggy API (or even just an ok API)
2 - Developers rely on a quirky, weird or unexpected side effect because it's easier/more obvious or it just works this way due to a bug
3 - Original developer can't fix it because it would break compatibility
4 GOTO 1
That said, I'd say this is an excellent candidate to deprecate or warn about now, and to make impossible in a version 2. Then again, how would you even stop this? A string representation of an error is common in any language, you need it to log things.
I think at best there will be a static analysis rule (in e.g. go vet) that tries to figure out if any matching is done on the string representation of an error.
First they'd need to export the errors the stdlib returns https://news.ycombinator.com/item?id=41507714
I wouldn't hold my breath on that one.
As relates to infinite context, if one pairs the above with some kind of intelligent "solution-checker," it's interesting if models may be able to provide value across absolute monstrous text sizes where it's critical to tie two facts that are worlds apart.