1) modules only really help address time spent parsing stuff, not time spent doing codegen. Actually they can negatively impact codegen performance because they can make more definitions available for inlining/global opts, even in non-lto builds. For this reason it's likely best to compare using thin-lto in both cases.
2) when your dependencies aren't yet modularized you tend to get pretty big global module fragments, inflating both the size of your BMIs and the parsing time. Header units are supposed to partially address this but right now they are not supported in any build systems properly (except perhaps msbuild?). Also clang is pretty bad at pruning the global module fragment of unused data, which makes this worse again.
While the evidence shown above is pretty clear that building a software package as a module provides the claimed benefits in terms of compile time (a reduction by around 10%, see Section 5.1.1) and perhaps better code structure (Section 5.1.4), the data shown in Section 5.1.2 also make clear that the effect on compile time of downstream projects is at best unclear.
So, alas, underwhelming in this iteration and perhaps speaks to 'module-fication' of existing source code (deal.II, dates from the '90s I believe), rather than doing it from scratch. More work might be needed in structuring the source code into modules as I have known good speedup with just pch, forward decls etc. (more than 10%). Good data point and rich analysis, nevertheless.One part of me agrees with (both from the paper)
> For example, putting a specific piece of code into the right place in each file (or adding necessary header files, as mentioned in Section 5.2) might take 20-30 seconds per file – but doing this for all 1051 files of deal.II then will take approximately a full day of (extremely boring) work. Similarly, individually annotating every class or function we want to export from a module is not feasible for a project of this size, even if from a conceptual perspective it would perhaps be the right thing to do.
and
> Given the size and scope of the library, it is clear that a whole-sale rewrite – or even just substantial modifications to each of its 652 header and 399 implementation files – is not feasible
but another part knows that spending a few days doing such ‘boring’ copy-paste work like that often has unexpected benefits; you get to know the code better and may discover better ways to organize the code.
Maybe, this project is too large for it, as checking that you didn’t mess up things by building the code and running the test suite simply takes too long, but even if it seems to be, isn’t that a good reason to try and get compile times down, so that working on the project becomes more enjoyable?
Header units are basically chained PCHs. Sadly they are hard to build correctly at the moment.
See VC++ devblogs and CppCon/C++Now talks from the team.
Pre-compiled headers have only worked well on Windows, and OS/2 back in the day.
For whatever reason UNIX compilers never had a great implementation of it.
With exception of clang header maps, which is anyway one of the first approaches to C++ modules.
Then around 1995 I got access to HP-UX and native compiler there and GCC. Nobody heard about precompiled headers and people thought the only way to speed up compilation was to get access to computer with more CPUs and rely on make -j.
And then there was no interest to implement precompiled headers from free and proprietary vendors.
The only innovation was unity builds when one includes multiple C++ sources into super-source. But then Google killed support for it in Chromium claiming that with their build farm unity builds made things slower and supporting them in Chromium build system was unbearable burden for Google.
We are commonly working with games that come with a custom engine and tooling. Compiling everything from scratch (around 1M lines of modern C++ code) takes about 30-40 seconds on my desktop. Rebuilding 1 source file + linking comes in typically under 2 seconds (w/o LTO). We might get this even lower by introducing unity builds, but there's no need for that right now.
My computer is fast, AMD Ryzen 9 7950X, code is stored on an NVMe SSD. But there certainly are projects with fewer lines of code that take substantially longer to compile.