I've had a fairly steady process for doing this: look at each route defined in Django, build out my `+page.server.ts`, and then split each major section of the page into a Svelte component with a matching Storybook story. It takes a lot of time to do this, since I have to ensure I'm not just copying the template but rather recreating it in a more idiomatic style.
This kind of work seems like a great use case for AI assisted programming, but I've failed to use it effectively. At most, I can only get Claude Code to recreate some slightly less spaghetti code in Svelte. Simple prompting just isn't able to get AI's code quality within 90% of what I'd write by hand. Ideally, AI could get it's code to something I could review manually in 15-20 minutes, which would massively speed up the time spent on this project (right now it takes me 1-2 hours to properly translate a route).
Do you guys have tips or suggestions on how to improve my efficiency and code quality with AI?
1. If there is anything Claude tends to repeatedly get wrong, not understand, or spend lots of tokens on, put it in your CLAUDE.md. Claude automatically reads this file and it’s a great way to avoid repeating yourself. I add to my team’s CLAUDE.md multiple times a week.
2. Use Plan mode (press shift-tab 2x). Go back and forth with Claude until you like the plan before you let Claude execute. This easily 2-3x’s results for harder tasks.
3. Give the model a way to check its work. For svelte, consider using the Puppeteer MCP server and tell Claude to check its work in the browser. This is another 2-3x.
4. Use Opus 4.5. It’s a step change from Sonnet 4.5 and earlier models.
Hope that helps!
Sure, for 4/5 interactions then will ignore those completely :)
Try for yourself: add to CLAUDE.md an instruction to always refer to you as Mr. bcherny and it will stop very soon. Coincidentally at that point also loses tracks of all the other instructions.
I think you may be observing context rot? How many back and forths are you into when you notice this?
I'm sure there are workarounds such as resetting the context, but the point is that god UX would mean such tricks are not needed.
One other feature with CLAUDE.md I’ve found useful is imports: prepending @ to a file name will force it to be imported into context. Otherwise, whether a file is read and loaded to context is dependent on tool use and planning by the agent (even with explicit instructions like “read file.txt”). Of course this means you have to be judicial with imports.
My current understanding is that it’s for demos and toy projects
You don't just YOLO it. You do extensive planning when features are complex, and you review output carefully.
The thing is, if the agent isn't getting it to the point where you feel like you might need to drop down and edit manually, agents are now good enough to do those same "manual edits" with nearly 100% reliability if you are specific enough about what you want to do. Instead of "build me x, y, z", you can tell it to rename variables, restructure functions, write specific tests, move files around, and so on.
So the question isn't so much whether to use an agent or edit code manually—it's what level of detail you work at with the agent. There are still times where it's easier to edit things manually, but you never really need to.
I feel like when I do plan mode (for CC and competing products), it seems good, but when I tell it to execute the output is not what we planned. I feel like I get slightly better results executing from a document in chunks (which of course necessitates building the iterative chunks into the plan).
yes the executor only needs the next piece of the plan.
I tend to plan in an entirely different environment, which fits my workflow and has the added benefit of providing a clear boundary between the roles. I aim to spend far more time planning than executing. if I notice getting more caught up in execution than I expected, that's a signal to revise the plan.
> I add to my team’s CLAUDE.md multiple times a week.
How big is that file now? How big is too big?I am currently working on a new slash command /investigate <service> that runs triage for an active or past incident. I've had Claude write tools to interact with all of our partner services (AWS, JIRA, CI/CD pipelines, GitLab, Datadog) and now when an incident occurs it can quickly put together an early analysis of a incident finding the right people to involve (not just owners but people who last touched the service), potential root causes including service dependency investigations.
I am putting this through it's paces now but early results are VERY good!
Ours is maybe half that size. We remove from it with every model release since smarter models need less hand-holding.
You can also break up your CLAUDE.md into smaller files, link CLAUDE.mds, or lazy load them only when Claude works in nested dirs.
And thank you for your work!! I focus all of my energy on helping families stay safe online, I make educational content and educational products (including software). Claude Code has helped me amplify my efforts and I’m able to help many more families and children as a result. The downstream effects of your work on Claude Code are awesome! I’ve been in IT since 1995 and your tools are the most powerful tools I’ve ever used, by far.
@AGENTS.mdThis concerns me because fighting tooling is not a positive thing. It’s very negative and indicates how immature everything is.
Often the challenge is users aren't interacting with Claude Code about their rules file. If Claude Code doesn't seem to be working with you ask it why it ignore a rule. Often times it provides very useful feedback to adjust the rules and no longer violate them.
Another piece of advice I can give is to clear your context window often! Early in my start in this I was letting the context window auto compact but this is bad! Your model is it's freshest and "smartest" when it has a fresh context window.
This drives up price faster than quality though. Also increases latency.
They also recently lowered the price for Opus 4.5, so it is only 1.67x the price of Sonnet, instead of 5x for Opus 4.
(I'm not a particularly slow typer. I can go 70-90 WPM on a typing test. However, this speed drops quickly when I need to also think about what I'm saying. Typing that fast is also kinda tiring, whereas talking/thinking at 100-120 WPM feels comfortable. In general, I think just this lowered friction makes me much more willing to fully describe what I want)
You can also ask it, "do you have any questions?" I find that saying "if you have any questions, ask me, otherwise go ahead and build this" rarely produces questions for me. However, if I say "Make a plan and ask me any questions you may have" then it usually has a few questions
I've also found a lot of success when I tell Claude Code to emulate on some specific piece of code I've previously written, either within the same project or something I've pasted in
This doesn't feel relatable at all to me. If my writing speed is bottlenecked by thinking about what I'm writing, and my talking speed is significantly faster, that just means I've removed the bottleneck by not thinking about what I'm saying.
In principle I don't see why they should have different amounts of thought. That'd be bounded by how much time it takes to produce the message, I think. Typing permits backtracking via editing, but speaking permits 'semantic backtracking' which isn't equivalent but definitely can do similar things. Language is powerful.
And importantly, to backtrack in visual media I tend to need to re-saccade through the text with physical eye motions, whereas with audio my brain just has an internal buffer I know at the speed of thought.
Typed messages might have higher _density_ of thought per token, though how valuable is that really, in LLM contexts? There are diminishing returns on how perfect you can get a prompt.
Also, audio permits a higher bandwidth mode: one can scan and speak at the same time.
It's incredibly cheap and works reliably for me.
I have got it to paste my voice transcriptions into Chrome (Gemini, Claude, ChatGPT) as well as Cursor.
Superwhisper offers some AI post-processing of the text (e.g., making nice bullets or grammar), but this doesn't seem necessary and just makes things a bit slower
I use a keyboard shortcut to start and stop recording and it will put the transcription into the clipboard so I can paste into any app.
It's a huge productivity boost - OP is correct about not overthinking trying to be that coherent - the models are very good at knowing what you mean (Opus 4.5 with Claude Code in my case)
Claude on macOS and iOS have native voice to text transcription. Haven't tried it but since you can access Claude Code from the apps now, I wonder if you use the Claude app's transcription for input into Claude Code.
Yeah, Claude/ChatGPT/Gemini all offer this, although Gemini's is basically unusable because it will immediately send the message if you stop talking for a few seconds
I imagine you totally could use the app transcript and paste it in, but keeping the friction to an absolute minimum (e.g., just needing to press one hotkey) feels nice
Also, treat bad AI suggestions as learning opportunities - understand why the code is wrong and what it misunderstood about your requirements.
1. Start with the ‘brainstorm’ session where you explain your feature or the task that you're trying to complete. 2. Allow it to write up a design doc, then an implementation plan - both saved to disk - by asking you multiple clarifying questions. Feel free to use voice transcription for this because it is probably as good as typing, if not better. 3. Open up a new Claude window and then use a git worktree with the Execute Plan command. This will essentially build out in multiple steps, committing after about three tasks. What I like to do is to have it review its work after three tasks as well so that you get easier code review and have a little bit more confidence that it's doing what you want it to do.
Overall, this hasn't really failed me yet and I've been using it now for two weeks and I've used about, I don't know, somewhere in the range of 10 million tokens this week alone.
1. True vibe coding (one-shot, non-trivial, push to master) does not work. Do not try it.
2. Break your task into verifiable chunks. Work with Claude to this end.
3. Put the entire plan into a Markdown file; it should be as concise as possible. You need a summary of the task; individual problems to solve; references to files and symbols in the source code; a work list, separated by verification points. Seriously, less is more.
4. Then, just loop: Start a new session. Ask it to implement the next phase. Read the code, ask for tweaks. Commit when you're happy.
Seriously, that's it. Anything more than that is roleplaying. Anything less is not engineering. Keep a list in the Markdown file of amendments; if it keeps messing the same thing up, add one line to the list.
To hammer home the most important pieces:
- Less is more. LLMs are at their best with a fresh context window. Keep one file. Something between 500 and 750 words (checking a recent one, I have 555 words / 4276 characters). If that's not sufficient, the task is too big.
- Verifiable chunks. It must be verifiable. There is no other way. It could be unit tests; print statements; a tmux session. But it must be verifiable.
If you treat it like a rubber duck it’s magic
If you think the rubber duck is going to think for you then you shouldn’t even start with them.
I think this perspective also goes a long way to understanding the very different results different devs get from these tools.
my main approach to quality is to focus agent power on all that code which I do not care about the beauty of: problems with verifiable solutions, experiments, disposable computation. eg my current projects are build/deploy tools, and I need sample projects to build/deploy. I never even reviewed the sample projects' code: so long as they hit the points we are testing.
svelte does not really resonate with me, so I don't know it well, but I suspect there should be good opportunities for TDD in this rewrite. not the project unit tests, just disposable test scripts that guide and constrain new dev work.
you are right to notice that it is not working for you, and at this stage sometimes the correct way to get in sync with the agents is to start again, without previous missteps to poison the workspace. There's good advice in this thread, you might like to experiment with good advice on a clean slate.
I would open a chat and refactor the template together with cursor: I would tell it what I want and if I don’t like something, I would help it to understand what I like and why. Do this for one route and when you are ready, ask cursor to write a rules file based on the current chat that includes the examples that you wanted to change and some rationale as to why you wanted it that way.
Then in the next route, you can basically just say refactor and that’s it. Whenever you find something that you don’t like, tell it and remind cursor to also update the rules file.
The more specific and concise you are, the easier it will be for the searcher. Also, the less modification, the better, because the more you try to move away from the data in the training set, the higher the probability of errors.
I would do it like this:
1. Open the project in Zed 2. Add the Gemini CLI, Qwen code, or Claude to the agent system (use Gemini or Qwen if you want to do it for free, or Claude if you want to pay for it) 3. Ask it to correct a file (if the files are huge, it might be better to split them first) 4. Test if it works 5. If not, try feeding the file and the request to Grok or Gemini 3 Chat 6. If nothing works, do it manually
If instead you want to start something new, one-shot prompting can work pretty well, even for large tasks, if the data is in the training set. Ultimately, I see LLMs as a way to legally copy the code of other coders more than anything else
Using carefully written specs, I've found Claude will produce flawless code for quite complex problems. It's magic.
For mid sized tasks and up, architecture absolutely has to be done up front in planning mode. You can ask it questions like "what are some alternatives?", "which approach is better?".
If it's producing spaghetti code, can you explain exactly what it's doing wrong? If you have an idea of what ideal solution should look like, it's not too difficult to guide the LLM to it.
In your prompt files, include bad and good examples. I have prompt files for API/interface design, comment writing, testing, etc. Some topics I split into multiple files like criteria for testing, testing conventions.
I've found the prompts where they go "you are a X engineer specializing in Y" don't really do much. You have to break things down into concrete instructions.
1) Thoroughly define step-by-step what you deem to be the code convention/style you want to adhere to and steps on how you (it) should approach the task. Do not reference entire files like “produce it like this file”, it’s too broad. The document should include simple small examples of “Good” and “Bad” idiomatic code as you deem it. The smaller the initial step-by-step guide and code conventions the better, context is king with LLMs and you need to give it just enough context to work with but not enough it causes confusion.
2) Feed it to Opus 4.5 in planning mode and ask it to follow up with any questions or gaps and have it produce a final implementation plan.md. Review this, tweak it, remove any fluff and get it down to bare bones.
3) Run the plan.md through a fresh Agentic session and see what the output is like. Where it’s not quite correct add those clarifications and guardrails into the original plan.md and go again with step 3.
What I absolutely would NOT do is ask for fixes or changes if it does not one-shot it after the first go. I would revise plan.md to get it into a state where it gets you 99% of the way there in the first go and just do final cleanup by hand. You will bang your head against the wall attempting to guide it like you would a junior developer (at least for something like this).
I very often, when reviewing code, think of better abstractions or enhancements and just continue asking for refactors inline. Very very rarely does the model fall off the rails.
I suppose if your unit of work was very large you might have more issues perhaps? Generally though, large units of work have other issues as well.
1. Switch off your computer.
2. Go to a nice Park.
3. Open notebook and pen, and write prompts that are 6-8 lines long on what task you want to achieve, use phone to google specific libraries.
4. Come back to your PC, type those prompts in with Plan mode and ask for exact code changes claude is going to make.
5. Review and push PR.
6. Wait for your job to be automated.
I think there's a lot of value in using AIs that are dumb to learn what they fail at. The methods I learned using gpt3.5 for daily work still transaltes over to the most modern of AI work. It's easy to understand what makes AI fail on a function or two than understanding that across entire projects.
My main tips:
1. More input == lower quality
Simply put, the more you can focus your input data to output results the higher quality you will get.
For example on very difficult problems I will not only remove all comments but I will also remove all unrelated code and manually insert it for maximum focus.
Another way to describe this is compute over problem space. You are capped in compute so you must control your problem space.
2. AI output is a reflection of input tokens and therefore yourself.
If you don't know what you're doing in a project or are mentally "lazy" AI will fail with death by a thousand cuts. The absolute best use of AI is knowing EXACTLY what you want and describing it in as few words as possible. I directly notice if I feel lazy or tired in a day and rely heavily on the model I will often have to revert entire days of work due to terrible design.
3. Every bad step of results from an AI or your own design compound problems as you continue.
It's very difficult to know the limits of current AI methods. You should not be afraid of reverting and removing large amounts of work. If you find it failing heavily repeatedly this is a good sign your design is bad or asking too much from it. Continuing on that path reduces quality. You could end up in the circular debugging loops with every fix or update adds even more problems. It's far better practice to drop the entire feature of updates and restart with smaller step by step actions.
4. Trust AI output like you would stack overflow response or a medium article.
Maybe its output would work in some way but it has a good chance of not working for you. Repeatedly asking same questions differently or different angles is very helpful. The same way debugging via stack overflow was trying multiple suggestions to discover the best real problem.
Don't feel like you might get "left behind". LLM assisted development is still changing rapidly. What was best practice 6 months ago is irrelevant today. By being an early adopter you will just learn useless workarounds that might soon not be necessary to know.
On the other hand if you keep coding "by hand" will keep your skills sharp. You will protect yourself against the negative mental effects of using LLMs like skill decline, general decline of mental capacity, danger of developing psychosis because of the sycophantic nature of LLMs and so on.
LLM based coding tools are only getting easier to use and if you actually know how to code and know software architecture you will able to easily integrate LLM based workflows and deliver far superior results compared to someone who spend their years vibe coding, even if you picked up Claude Code or whatever just a month ago. No need for FOMO,
Get very good at context management (updating AGENTS.md, starting new session, etc).
Embrace TDD. It might have been annoying when Extreme Programming came out 25 years ago, but now that agents can type a lot faster than us, it's an awesome tool for putting guardrails around the agent.
(I teach workshops on best practices for agentic coding)
IMO, I found those specific example tasks to be better handled by my IDE's refactoring features, though support for that is going to vary by project/language/IDE. I'm still more of a ludite when it comes to LLM based development tools, but the best case I've seen thus far is small first bites out of a big task. Working on an older no-tests code base recently, it's been things like setting up 4-5 tests that I'll expand on into a full test suite. You can't take more than a few "big" bites out of a task before you have 0 context as to what direction the vector soup sloshed in.
So, in terms of carpentry, I don't want an LLM framer who's work I need to build off of, but an LLM millworker handing me the lumber is pretty useful.
In terms of ai assisted programming. I microanage my ai. Give it specific instructions with single steps. Don't really let it build ehoe files by itself as it usually makes a mess of things, bit it's useful when doing predictable changes and marginally faster than doing it manually.
Open up cursor-agent to make the repo scaffolding in an empty dir. (build system, test harness, etc. )
Open up cursor or Claude code or whatever and just go nuts with it. Remember to follow software engineering best practices (one good change with tests per commit)
I still find chat interface generally more useful than coding assistant. It allows you to think and discuss higher level about architecture and ideas before jumping into implementation. The feedback loop is way faster because it is higher level and it doesn't have to run through your source tree to answer a question. You can have a high ROI discussion of ideas, architecture,algorithms, and code, before committing to anything. I still do most of my work copying and pasting from the chat interface.
Agents are nice when you have a very specific idea in mind, but I'm not yet hugely fond of them otherwise. IME the feedback loop is too long, they often do things badly, and they are overly confident in their oytput, encouraging cursory reviews and commits of hacked-together work. Sometimes I'll give it an ambitious task just in the off chance that it'll succeed, but with the understanding that if it doesn't get it right the first time, I'll either throw it away completely, or just keep whatever pieces it got right and pitch the rest; it almost never gets it right the second time if it's already started on an ugly approach.
But the main thing is to start small. Beyond one-shotting prototypes, don't expect it to change everything overnight. Focus on the little improvements, don't skip design, and don't sacrifice quality! Over time, these things will add up, and the tools will get better too. A 10% improvement every month gets to be a 10x improvement in (math...). And you'll be a lot better positioned than those who tried to jump onto the 10x train too fast because you'll not have skipped any steps.
1.1^24=9.85, so yeah, if you could reliably get a 10% speed-up each month, you’d get to 10x in roughly 2 years. (But I’d expect the speed-up per month to be non-linear.)
1. Define the work.
2. When working in a legacy code base provide good examples of where we want to go with the migration and the expectation of the outcome.
3. Tell it about what support tools you have, lint, build, tests, etc.
4. Select a very specific scenario to modify first and have it write tests for the scenario.
5. Manually read and tweak the tests, ensure they’re testing what you want, and they cover all you require. The tests help guardrail the actual code changes.
6. Depending upon how full the context is, I may create a new chat and then pull in the test, the defined work, and any related files and ask it to implement based upon the data provided.
This general approach has worked well for most situations so far. I’m positive it could be improved so any suggestions are welcome.
That builds the main claude.md file. If you don’t have that file CC starts each new session completely oblivious to your project like a blank slate.
I program mostly in VBA these days (a little problematic as is a dead leanguage since 2006 and even then it was niche) and I have never recived a correct high level ""main"" sub but the AIs are pretty good at doing small subs I then organize.
And yes, telling me where I make errors, they are pretty good at that
At the end of the day I want reliability and there is no way I can't do what without full review.
The funny thing is that they try to use the """best practices""" of coding where you would reasonably want to NOT have them.
I would split it in 2 steps.
First, just move it to svelte, maintain the same functionality and ideally wrap it into some tests. As mentioned you want something that can be used as pass/no-pass filter. As in yes, the code did not change the functionality.
Then, apply another pass from Svelte bad quality to Svelte good quality. Here the trick is that "good quality" is quite different and subjective. I found the models not quite able to grasp what "good quality" means in a codebase.
For the second pass, ideally you would feed an example of good modules in your codebase to follow and a description of what you think it is important.
1. Prompt the agent
2. The agent gets too work
3. Review the changes
4. Repeat
This can speed up your process significantly, and the UI clearly shows the changes + some other cool features
EDIT: from reading your post again, I think you could benefit primarily from a clear UI with the adjusted code, which Cursor does very well.
I heard of Cline and Aider, but didn't try anything.
It may even be worth having it write a parser/evaluator that does these steps in a deterministic fashion. Probably won't work, but maybe worth a shot. So long as it does each translation as a separate step, maybe at least one of them will end up working well enough, and that'll be a huge time saver for that particular task.
Has this also been your experience?
I've had very good results with Claude Code using this workflow.
https://open.substack.com/pub/sleuthdiaries/p/guide-to-effec...
put an example in the prompt: this was the original Django file and this is the rewritten in SvelteKit version.
the ask it to convert another file using the example as a template.
you will need to add additional rules for stuff not covered by the example, after 2-3 conversions you'll have the most important rules.
or maybe fix a bad try of the agent and add it as a second example
Basically a good multiplier, and an assistant for mudane task, but not a replacement. Still requires the user to have good understanding about the codebase.
Writing summary changes for commit logs is amazing however, if you're required to.
But I can't even shit on Claude AI, because I used it to rewrite part of the tests, and analyse the solution to fix the race condition (and how to test it).
It's a good tool, but in the last few weeks I've been more and more mad about it.
Anyway. I use it to generate a shell. No logic inside, just data models, and functions prototypes. That help with my inability to start something new. Then I use it to write easy functions. Helpers I know I'll need. Then I try to tie everything together. I never hesitate to stop Claude and write specific stuff myself, add a new prototype/function, or delete code. I restart the context often (Opus is less bad about it, but still). Then I ask it about easy refactoring or library that would simplify the code. Ask for multiple solutions each time.
Things I personally find work well.
1. Chat through with the AI first the feature you want to build. In codex using vscode I always switch to chat mode, talk through what I am trying to achieve and then once myself and the AI are in "agreement" switch to agent mode. Google's antigravity sort of does this by default and I think it's probably the correct paradigm to use.
2. Get the basics right first. It's easy for the AI to produce a load of slop, but using my experience of development I feel I am (sort of) able to guide the AI in advance in a similar way to how I would coach junior developers.
3. Get the AI to write tests first. BDD seems to work really well for AI. The multiplayer game I was building seemed to regress frequently with just unit tests alone, but when I threw cucumber into the mix things suddenly got a lot more stable.
4. Practice, the more I use AI the more I believe prompting is a skill in itself. It takes time to learn how to get the best out of an Agent.
What I love about AI is the time it gives me to create these things. I'd never been able to do this before and I find it very rewarding seeing my "work" being used by my kids and fellow nostalgia driven gamers.
It's important (though often surprisingly hard!) to remember it's just a tool, so if it's not doing things the way you want, start over with something else. Don't spend too much time on a lost cause.
Use mind altering drugs. Give yourself arbitrary artificial constraints.
Try using it in as many different ridiculous ways you can. I am getting the feeling you are only trying one method.
> I've had a fairly steady process for doing this: look at each route defined in Django, build out my `+page.server.ts`, and then split each major section of the page into a Svelte component with a matching Storybook story. It takes a lot of time to do this, since I have to ensure I'm not just copying the template but rather recreating it in a more idiomatic style.
Relinquish control.
Also, if you have very particular ways of doing things, give it samples of before and after (your fixed output) and why. You can use multishot prompting to train it to get the output you want. Have it machine check the generated output.
> Simple prompting just isn't able to get AI's code quality within 90%
Would simple instructions to a person work? Esp a person trained on everything in the universe? LLMs are clay, you have to mold them into something useful before you can use them.
2. Tell it you want to refactor the code to achieve goal Z. Tell it to take a look and tell you how it will approach this. Consider showing it one example refactor you've already done (before and after).
3. Ask it to refactor one thing (only) and let you look at what it did.
4. Course correct if it didn't do the right thing.
5 Repeat.
Always check your assumptions!
You might be thinking of it as a good task because it seems like some kind of translation of words from one language to another, and that's one of the classes of language transformations that LLM's can do a better job at than any prior automated tool.
And when we're talking about an LLM translating the gist of some English prose to French, for a human to critically interpret in an informal setting (i.e not something like diplomacy or law or poetry), it can work pretty well. LLM's introduce errors when doing this kind of thing, but the broader context of how the target prose is being used is very forgiving to those kinds of errors. The human reader can generally discount what doesn't make sense, redundancy across statements of the prose can reduce ambiguity or give insight to intent, the reader may be able to interactively probe for clarifications or validations, the stakes are intentionally low, etc
And for some kinds of code-to-code transforms, code-focused LLM's can make this work okay too. But here, you need a broader context that's either very forgiving (like the prose translation) or that's automatically verifiable, so that the LLM can work its way to the right transform through iteration.
But the transform you're trying to do doesn't easily satisfy either of those contexts. You have very strict structural, layout, and design expectations that you want to replicate in the later work and even small "mistranslations" will be visually or sometimes even functionally intolerable. And without something like a graphic or DOM snapshot to verify the output with, you can't aim for the iterative approach very effectively.
TLDR; what you're trying to do is not inherently a great use case. It's actually a poor one that can maybe be made workable through expert handling of the tool. That's why you've been finding it difficult and unnatural.
If your ultimate goal is to improve your expertise with LLM's so that you can apply them to challenging use cases like this, then it's a good learning opportunity for you and a lot of the advice in other comments is great. The most key factor being to have some kind of test goal that the tool can use for verify its work until it strikes gold.
On the other hand, if your ultimate goal is to just get your rewrite done efficiently and its not an enormous volume of code, you probably just want to do it yourself or find one of our many now-underemployed humans to help you. Without expertise that you don't yet have, and some non-trivial overhead of preparatory labor (for making verification targets), the tool is not well-suited to the work.
Tale as old as time. The expert gets promoted to manager, and the replacement worker can’t deliver even 90% of what the manager used to. Often more like 30% at first, because even if they’re good, they lack years of context.
AI doesn’t change that. You still have to figure out how to get 5 workers who can do 30-70% of what you can do, to get more than 100% of your output.
There are two paths:
1. Externalized speed: be a great manager, accept a surface level understanding, delegate aggressively, optimize for output
2. Internalized speed: be a great individual contributor, build a deep, precise mental model, build correct guardrails and convention (because you understand the problem) and protect those boundaries ruthlessly, optimize for future change, move fast because there are fewer surprises
Only 1 is well suited for agent-like AI building. If 2 is you, you’re probably better off chatting to understand and build it yourself (mostly).
At least early on. Later, if you nail 2 and have a strong convention for AI to follow, I suspect you may be able to go faster. But it’s like building the railroad tracks before other people can use them to transport more efficiently.
Django itself is a great example of building a good convention. It’s just Python but it’s a set of rules everyone can follow. Even then, path 2 looks more like you building out the skeleton and scaffolding. You define how you structure Django apps in the project, how you handle cross-app concerns, like are you going to allow cross-app foreign keys in your models? Are you going to use newer features like generated fields (that tend to cause more obscure error messages in my experience)?
Here’s how I think of it. If I’m building a Django project, the settings.py file is going to be a clean masterpiece. There are specific reasons I’m going to put things in the same app, or separate apps. As soon as someone submits a PR that craps all over the convention I’ve laid out, I’m rejecting aggressively. If we’ve built the railroad tracks, and the next person decides the next set of tracks can use balsa wood for the railroad ties, you can’t accept that.
But generally people let their agent make whatever change it makes and then wonder why trains are flying off the tracks.
The more you use IA, the more your abilities decreases, the less you are able to use IA
This is the law of cheese: the more cheese, the more holes; The more holes, the less cheese; Thus, the more cheese, the less cheese;
NB: I'm talking about skill cap here, not speed of execution. Of course, an AI will be faster than a programmer… *if* it can handle the job, and *if* you can trust it enough to not need even more time in review…