They seem uninterested in trying to get their hardware supported by submitting their patches for inclusion in the Linux kernel, and popular distros. Instead, you have to trust their repos (based in PRC).
I would never buy one of these things without upstream kernel support for the SoC and a sane bootloader. Even the Raspberry Pi is not great on this front TBH (kernel is mostly OK but the fucked up boot chain is a PITA, requires special distro support).
I am somewhat amazed how you can manufacture such expensive high tech equipment yet are too cheap to setup a proper download service for the software, which would be very simple and cheap compared to making the hardware itself.
Maybe it is a Chinese mentality thing where the first question is always "What is the absolutely cheapest way to do this?" and all other concerns are secondary at best.
..which does not inspire confidence in the hardware either.
Maybe Chinese customers are different, see this, and think "These people are smart! Why pay more if you don't have to!".
"Chinese repos" refer to the fact that the debian repos links for updates point to custom Huawei servers.
it always work if you login into a Google account prior to downloading. If you don't, indeed the downloads will regularly fail.
That was not my experience, at least for very large files (100+ GB). There was a workaround (that has since been patched) where you could link files into your own Google drive and circumvent the bandwidth restriction that way. The current workaround is to link the files into a directory and then download the directory containing the link as an archive, which does not count against the bandwidth limit.
The problem isn't support for the ARM architecture in general, it's the support for this particular board.
Other boards like the Raspberry Pi and many boards based on Rockchip SoCs have most of the necessary support mainlined, so the experience is quite painless. Many are starting to get support for UEFI as well.
I believe some other distros also have UEFI booting/installers setup for PI4 and newer devices because of this, though there's a good chance you'll want some of the other libraries that come with Raspberry PI OS (aka Raspbian) still for some of the hardware specific features like CSI/DSI and some of the GPIO features that might not be fully upstreamed yet.
There's also a port of Proxmox called PXVirt (Formerly Proxmox Port) that exists to use a number of similar ARM systems now as a virtualization host with a nice ui and automation around it.
Manufacturers hack it together, flash to device and publish the sources, but dont bother with upstreaming and move on.
Same story as android devices not having updates two years after release.
Any SBC could buy an extra flash chip and burn an outdated U-Boot with the manufacturer's DTB baked in. Then U-Boot would boot Linux, just like UEFI does, and Linux would read the firmware's fixed DTB, just like it reads x86 firmware's fixed ACPI tables.
But - cui bono?
You need drivers in your main OS either way. On x86 you are not generally relying on your EFI's drivers for storage, video or networking.
It's actually nice that you can go without, and have one less layer.
It's a problem that's inherit to mobile computing and will likely never change unless with regulation or an open standards device line somehow hitting it out of the park and setting new expectations a la PCs.
The problem is zero expectation of ever running anything other than the vendor supplied support package/image and how fast/cheap it is to just wire shit together instead of worrying about standards and interoperability with 3rd party integrators.
At some point the "good" boards get enough support and the situation slowly improves.
We reached the state where you dont need to spec-check the laptop if you want to run linux on it, the same will happen to arm sbc I hope.
The shape of historically delivered ARM artifacts has been embedded devices. Embedded devices usually work once in one specific configuration. The shape of historically delivered ARM Linux products is a Thing that boots and runs. This only requires a kernel that works on one single device in one single configuration.
The shape of historically delivered x86 artifacts is socketed processors that plug into a variety of motherboards with a variety of downstream hardware, and the shape of historically delivered x86 operating systems is floppies, CDs, or install media that is expected to work on any x86 machine.
As ARM moves out of this historical system, things improve; I believe that for example you could run the same aarch64 Linux kernel on Pi 2B 1.2+, 3, and 4, with either UEFI/ACPI or just different DTBs for each device, because the drivers for these devices are mainline-quality and capable of discovering the environment in which they are running at runtime.
People commonly point to ACPI+UEFI vs DeviceTree as causes for these differences, but I think this is wrong; these are symptoms, not causes, and are broadly Not The Problem. With properly constructed drivers you could load a different DTB for each device and achieve similar results as ACPI; it's just different formats (and different levels of complexity + dynamic behavior). In some ways ACPI is "superior" since it enables runtime dynamism (ie - power events or even keystrokes can trigger behavior changes) without driver knowledge, but in some ways it's worse since it's a complex bytecode system and usually full of weird bugs and edge cases, versus DTB where what you see is what you get.
For example I have an Orange Pi 5 Plus running the totally generic aarch64 image of Home Assistant OS [0]. Zero customization was needed, it just works with mainline everything.
There's even UEFI [1].
Granted this isn't the case for all boards but Rockchip at least seems to have great upstream support.
[0]: https://github.com/home-assistant/operating-system/releases
I'm not a compiler expert... But it seems each ARM64 board needs its own custom kernel support, but once that is done, it can support anything compiled to ARM64 as a general target? Or will we still need to have separate builds for RPi, for this board, etc?
Once you get into the CPU though the Aarch64 registers become more standardized. You still have drivers and such to worry about and differing memory offsets for the peripherals - but since you have the kernel running it’s easier to kind of poke around until you find it. Pi 5 added someone complexity to this with the RP1 South Bridge which adds another layer of abstraction.
Hopefully that all makes sense. Basically the Pi itself is backwards while everything else should conform. It’s not Arm specific, but how the Pi does things.
Often an outright mediocre software development culture generally, that sees software as a pure cost centre, in fact. The "product" is seem to be the chip, the software "just" a side show (or worse, a channel by which their IP could leak).
The Rockchip stuff is better, but still has similar problems.
These companies need to learn that their hardware will be adopted more aggressively for products if the experience of integrating with it isn't sub-par.
I’m not saying one approach is better than the other but there is definitely a lot of art in each camp. I know the one I innately prefer but I’ve definitely had eyebrows raised at me in a professional setting when expressing that view; Some places value upgrading dependencies while others value extreme stability at the potential cost of security.
Both are valid. The latter is often used as an excuse, though. No, your $50 wifi connected camera does not need the same level of stability as the WiFi connected medical device that allows doctor to remotely monitor medication. Yes, you should have a moderately robust way to update and build and distribute a new FW image for that camera.
I can't tell you the number of times I've gotten a shell on some device only to find that the kernel/os-image/app-binary or whatever has build strings that CLEARLY feature `some-user@their-laptop` betraying that if there's ever going to be an updated firmware, it's going to be down to that one guy's laptop still working and being able to build the artifact and not because a PR was merged.
If ARM cannot outdo x86 on power draw anymore then it really is entirely pointless to use it because you're trading off a lot, and it's basically guaranteed that the board will be a useless brick a few years down the line.
They are not in the same class, which is reflected in the power envelope.
BTW what's up with people pushing N150 and N300 in every single ARM SBC thread? Y'all Intel shareholders or something? I run both but not to the exclusion of everything else. There is nothing I've failed to run successfully on my ARM ones and the only thing I haven't tried is gaming.
It has basically the same single-core performance as an N150 box
Random N150 result: https://browser.geekbench.com/v6/cpu/10992465
> BTW what's up with people pushing N150 and N300 in every single ARM SBC thread?
At this point I expect a lot of people have been enticed by niche SBCs and then discovered that driver support is a nightmare, as this article shows. So in time, everyone discovers that cheap x86-64 boxes accomplish their generic computing goals easier than these niche SBCs, even if the multi-core performance isn't the same.
Being able to install a mainline OS and common drivers and just get to work is valuable.
Because they have a great watt/performance ratio along with a GPU that is very well supported by a wide range of devices and mainline kernel support. In other words a great general purpose SBC.
Meanwhile people are using ARM SBCs, with SoCs designed for embedded or mobile devices, as general purpose computers.
I will admit with RAM and SSD prices sky rocketing these ARM SBC look more attractive.
For 90% of use cases, ARM SBCs are not appropriate and will not meet expectations over time.
People expect them to be little PCs, and intend to use them that way, but they are not. Mini PCs, on the other hand, are literally little PCs and will meet the expectations users have when dealing with PCs.
2. The review says single core Geekbench performance is 1290, same as i5-10500 which is also similar to N150, which is 1235.
3. You can still get N150s with 16gb ram in a case for $200 all in.
Single core, yes. Multi core score is much higher for this SBC vs the N150.
You're probably right about "most workloads", but as a single counter-example, I added several seasons of shows to my N305 Plex server last night, and it pinned all eight threads for quite a while doing its intro/credit detection.
I actually went and checked if it would be at all practical to move my Plex server to a VM on my bigger home server where it could get 16 Skymont threads (at 4.6ghz vs 8 Gracemont threads at ~3ghz - so something like 3x the multithreaded potential on E-cores). Doesn't really seem workable to use Intel Quick Sync on Linux guests with a Hyper-V host though.
if you are talking about ancient hardware, yes, it's mostly driven by single core performance. But any console more recent than the 2000s will hugely benefit from multiple cores (because of the split between CPU and GPU, and the fact that more recent consoles also had multiple cores, too).
Why would the A720 at 2.8 GHz run circles around the N150 that boosts up to 3.6 GHz in single-threaded workloads, while the 12-core chip would wouldn't beat the 4-core chip in multithreaded workloads?
Obviously, the Intel chip wins in single-threaded performance while losing in multi-threaded: https://www.cpubenchmark.net/compare/6304vs6617/Intel-N150-v...
I can't speak to why other people bring up the N150 in ARM SBC threads any more than "AMD doesn't compete in the ~$200 SBC segment".
FWIW, as far as SBC/NUCs go, I've had a Pi 4, an RK3399 board, an RK3568 board, an N100 NUC from GMKTec, and a N150 NUC from Geekom, and the N150 has by far been my favorite out of those for real-world workloads rather than tinkering. The gap between the x86 software ecosystem and the ARM software ecosystem is no joke.
P.S. Stay away from GMKTec. Even if you don't get burned, your SODIMM cards will. There are stoves, ovens, and hot plates with better heat dissipation and thermals than GMKTec NUCs.
ARM actually has a spec in place called SystemReady that standardizes on UEFI, which should make bringup of ARM systems much less jank. But few have implemented it yet. I keep saying, the first cheap Chinese vendor that ships a SystemReady-compliant SBC is gonna make a killing.
Agree. When ARM announced the initiative, I thought that the raspberry pi people would be quick but they haven't even announced a plan to eventually support it. I don't know what the hold up is! Is it really that difficult to implement?
4b / 5 for the camera stuff.
i don’t think using these boards for just compute makes a lot of sense unless it’s for toy stuff like an ssh shell or pihole
I noticed nuance is the first thing discarded in the recurring x86 vs Arm flame wars, with each side minimizing the strength of the "opposing" platform. Pick the right tool for the right job, there are use-cases where the Orange Pi 6 is the right choice.
Likewise my VPS @ Hetzner is running Aarch64. No drama. Only pain is how brutal the Rust cross-compile is from my x86 machine.
I mean, here's Geerling running a bunch of Steam games flawlessly on a Aarch64 NVIDIA GB10 machine: https://www.youtube.com/watch?v=FjRKvKC4ntw
(Those things are expensive, but I just ordered one [the ASUS variant] for myself.)
Meanwhile Apple is pushing the ARM64 architecture hard, and Windows is apparently actually quite viable now?
Personally... it's totally irrational, but I have always had a grudge against x86 since it "won" in the early 90s and I had to switch from 68k. I want diversity in ISAs. RISC-V would be nice, but I'll settle for ARM for now.
Or we should just have "STS" (Short Term Support) after the board names to let others know the board will be essentially obsolete (based on lack of software updates) in two months.
Deadend is how I describe it.
Whenever I would have a problem, and it was more often than not, I would search for a solution and come across something that worked for rpi that I could try to port across.
Double the hardware spec matters little if you can’t get the software to even compile
You can get any software to compile on this SBC. On the Raspberry Pi platform you usually don't need to compile anything.
I know the concept has been around for a while but no idea if it actually means anything. I assume that people are targeting ones in common devices like Apple, but what about here?
I've not found Neon to be fun or easy to use, and I frequently see devices ignoring the NPU and inferring on CPU because it's easier. Maybe you get lucky and someone has made a backend for something specific you want, but it's not common.
"you cannot simply use standard versions of PyTorch or TensorFlow out of the box. You must use the NeuralONE AI SDK."
Neon is a SIMD instruction set for the CPU, not a separate accelerator. It doesn't need an SDK to use, it's supported by compiler intrinsics and assembly language in any modern ARM compiler.
Even if it worked though, they're usually heavily bandwidth bottlenecked and near useless for LLM inference. CPU wins every time.
Both ARM64 devices run headless, make use of GPIO, and have more than enough CPU. In fact, these are stable enough that I run BSDs on them and don't bother with Linux.
The Rock64 runs FreeBSD for SDR applications (e.g. ADS-B receiver). FreeBSD has stable USB support for RTL-SDR devices.
The RockPro64 runs NetBSD with ZFS with a PCIe SSD. NetBSD can handle ARM big.LITTLE well. I run several home lab workloads on this. Fun device.
I also have an N150 device running the latest Debian 13 as my main home lab server for home automation, Docker, MQTT broker, etc.
In short: SBCs are cheap enough that you can choose more than one, each for the right task, including IoT.
Upstream the drivers to the mainline kernel or go bankrupt. Nobody should buy these.
> 15W at idle, which is fairly high
For what it's worth though the v5 did have Talos support, so you could just throw that on there, connect it to a cluster and have a decent arm node that is fanless and has 32gb
https://docs.siderolabs.com/talos/v1.12/platform-specific-in...
[0] https://lwn.net/ml/all/20250609031627.1605851-1-peter.chen@c...
Seems this machine is more powerful than it, definitely attractive to me for a physical aarch64 self host runner.
I was pleased to learn that Radxa and Orange Pi have compatible similar boards.
I have wanted to see more RISC SBCs so I may toy with these but I rather wait for the software support to get much richer.
In a nutshell, this new Orange Pi 6 Plus is much faster than Orange Pi 5 Ultra and anything that came before.
After the pandemic, the "25$" SBC suddenly became 100+ with low availability. The main thing that made rpis worth it is gone now, and they're all chasing number go up on benchmarks.
No thanks.
How yo trigger: just follow the link, and start scrolling down. Totally reproducible, just did it again
Yet again, OrangePi crank out half-baked products and tech enthusiasts who quite understandably lack the deep knowledge to do more than follow others' instructions on how to compile stuff talk about it as if their specifications actually matter.
Yet again the HN discourse will likely gather around stuff like "why not just use an N1x0" and side quests about how the Raspberry Pi Foundation has abandoned its principles / is just a cynical Broadcom psyop / is "lagging behind" in hardware.
This stuff can be done better and the geek world should be done excusing OrangePi producing hardware abandonware time after time. Stop buying this crap and maybe they will finally start focussing on doing more than shipping support for one or two old kernels and last year's OS while kicking vague commitments about future support just far enough down the road that they can release another board first.
Please stop falling for it :-/
ETA: I think what grinds my gears the most is that OrangePi, BananaPi etc., are largely free-riding off the Linux community while producing products that only "beat" the market-defining manufacturers (Raspberry Pi, BeagleBoard) because they treat software support as an uncosted externality.
This kind of "build it and they will use it" logic works well for microcontrollers, where a manufacturer can reasonably expect to produce a chip with a couple of tech demos, a spec sheet and a limited C SDK and people will find uses for it.
But for "near-desktop class" SBCs it is not much better than misrepresentation. Consequently these things are e-waste in a way that even the global desk drawer population of the Raspberry Pi does not reach.
And yet they are graded on a curve and never live up to their potential.
The reality is that they spam the market with a large number of products with little consistency, poor (if labyrinthine) documentation, random google drive links for firmware etc., and there are the same issues with hardware support.
I dunno, maybe the situation there is better than it was. But the broad picture is the same: better hardware but you are basically on your own.
What do you mean?