Also, nncp-2024-06-05.tar.gz is just 1180969 bytes, unlike ts_zip-2024-03-02.tar.gz (159228453 bytes, which is bigger than uncompressed enwiki8).
The results at https://www.mattmahoney.net/dc/text.html explicitly add the size of the compressor itself to the result. Note the "enwik9+prog" column. That's what it's ranked on.
The reason to do this is that it's trivial to create a compressor that 'compresses' a file to 0 bytes. Just have an executable with a dictionary of enwik9 that writes that out given any input. So we always measure what is effectively the Kolmogorov complexity. The data+program as a whole that produces the result we want.
So those results add in the compressor size. The programs there generally have no dictionary built in or in the case of LLM based compressors, no pre-trained data. They effectively build the model as they process data. Not compressing much at all at the start and slowly compressing better and better as they go. This is why these programs do better and better with larger data sets. They start with 0 knowledge. After a GB or so they have very good knowledge of the corpus of human language.
This program here however is pre-trained and shipped with a model. It's 150MB in size! This means it has 150MB of extra starting knowledge over those models in that list. The top models in that list are the better compressors, they'll quickly out learn and overtake this compressor but they just don't have that headstart.
Of course measuring fairly this should be listed with that 150MB program size added to the results when doing a comparison.
A Turing Machine compressor program would likely have more bytes than the amd64 binary. So how to evaluate KolmogorovComplexity(amd64)?
The laws of physics somehow need to be accounted for too, probably.
That is: no compression, but it won't make things worse either.
Unless the input data is the digits of pi, obviously, or the result of some computation involving pi.
On a more serious note, as far as I understand these compression competitions require that static data is included in the size computation. So if you compress 1000 MB into 500 MB, but to decompress you need a 1 MB binary and a 100 MB initial dictionary, your score would be 500 + 100 + 1 = 601 MB, not 500 MB.
The relevance to this discussion is that the LLM weights would have to be included as static data, since the only way to regenerate them is from the initial training data, which is much larger than the resulting model. By comparison, pi based compression is the other way around: since pi is a natural constant, if your decompressor requires (say) a trillion digits of pi, you could write a relatively small program (a few kb) to generate them. It would be terribly slow, but it wouldn't affect your compression ratio much.
Hopefully :-)
I've encountered it >10 years ago and it felt novel that compression is related to intelligence and even AGI.
I would like to know what deviations are in the output as this almost feels like a game of telephone where each re-compression results in a loss of data which is then incorrectly reconstructed. Sort of like misremembering a story and as you tell it over time the details change slightly.
If instead you run LLM prediction and then encode the probability of the next token of the input text you want to encode (from the cumulative distribution, a number in [0, 1]) using arithmetic coding, you can run the same operation in reverse to achieve lossless compression.
The tricky part is ensuring that your LLM executes absolutely deterministically, because you need to make sure that the encoder and decoder have the same probability distribution map at each step.
Arithmetic coding takes a prediction of the next bit and writes out exactly as many bits as needed to correct that prediction. The amazing part is that you can write out fractional bits. Eg. You predict the next bit is '1' with 75% probability? If it is 1 you only need to write out 1/2 of a bit (correcting that 25% portion). If it's 0 you need to write out 2.4bits. It may seem strange to work with 1/2 a bit but it works! (essentially the other half of the bit represents other future correction required). You might have heard of huffman coding which can't deal with fractional bits, arithmetic coding is a generalization of huffman coding that can deal with this.
Arithmetic coding is mathematically perfect at what it does. You will not waste a single bit using this algorithm to encode data given a prediction of that data.
So the entirety of modern compression techniques don't deal with the encoding/decoding side at all. What they deal with is modelling the data so far and making the most accurate prediction possible on the next bit of data (next byte also works, but working 1 bit at a time is easier to comprehend when learning arithmetic coding).
Incidentally the encoders and decoders essentially work exactly the same. Given the data read or data decoded so far predict the next bit. This part is exactly the same either way. The decoder would read the compressed file for the correction and the encoder would read the input file and write out the correction. The important part is "predict the next bit". This is what separates all the different compressors.
This is also where those of us experienced in this area try to correct people on the wrong track. A compression algorithm is never about the encoding side but instead 100% always about the prediction of the data. Can you build a model that can accurately predict what the next data to come is? That's what you need to do to make a better file compressor. The entropy encoding part is a completely solved problem already, don't bother re-solving that.
not really worth it