Show HN: Ocrbase – pdf → .md/.json document OCR and structured extraction API
72 points
7 hours ago
| 8 comments
| github.com
| HN
sync
4 hours ago
[-]
This is essentially a (vibe-coded?) wrapper around PaddleOCR: https://github.com/PaddlePaddle/PaddleOCR

The "guts" are here: https://github.com/majcheradam/ocrbase/blob/7706ef79493c47e8...

reply
M4R5H4LL
2 hours ago
[-]
Most production software is wrappers around existing libraries. The relevant question is whether this wrapper adds operational or usability value, not whether it reimplements OCR. If there are architectural or reliability concerns, it’d be more useful to call those out directly.
reply
tuwtuwtuwtuw
1 hour ago
[-]
Sure. The self host guide tells me to enter my github secret, in plain-text, in an env file. But it doesn't tell me why I should do that.

Do people actually store their secrets in plain text on the file system in production environments? Just seems a bit wild to me.

reply
adammajcher
42 minutes ago
[-]
well, you can use secrets manager as well
reply
Oras
4 hours ago
[-]
Claude is included in the contributors, so the OP didn’t hide it
reply
Tiberium
3 hours ago
[-]
At this point it feels like HN is becoming more like Reddit, most people upvote before actually checking the repo.
reply
binalpatel
1 hour ago
[-]
This is admittedly dated but even back in December 2023 GPT-4 with it's Vision preview was able to very reliably do structured extraction, and I'd imagine Gemini 3 Flash is much better than back then.

https://binal.pub/2023/12/structured-ocr-with-gpt-vision/

Back of the napkin math (which I could be messing up completely) but I think you could process a 100 page PDF for ~$0.50 or less using Gemini 3 Flash?

>560 input tokens per page * 100 pages = 56000 tokens = $0.028 input ($0.5/m input tokens) >~1000 output tokens per page * 100 pages = $0.30 output ($3/m output tokens)

(https://ai.google.dev/gemini-api/docs/gemini-3#media_resolut...)

reply
adammajcher
47 minutes ago
[-]
sure, in some small projects I recommend my friends to use gemini 3 flash. ocrbase is aimed more at scale and self-hosting: fixed infra cost, high throughput, and no data leaving your environment. at large volumes, that tradeoff starts to matter more than per-100-page pricing
reply
v3ss0n
5 hours ago
[-]
How this is better over Surya/Marker or kreuzberg https://github.com/kreuzberg-dev/kreuzberg.
reply
jadbox
5 hours ago
[-]
Sounds like someone needs to run their own test cases and report back on which solution does a better job...
reply
kspacewalk2
2 hours ago
[-]
Let me fire up Claude code.
reply
sixtyj
2 hours ago
[-]
Let me fire up Tesseract.

https://github.com/tesseract-ocr

reply
Jimmc414
1 hour ago
[-]
I fought with Tesseract for quite a while. Its good if high accuracy doesn't matter. Transcribing a book from clean, consistent non-skewed data its fine and an LLM might even be able to clean it up. But for legal or accounting data from hand scanned documents, the error rate made it untenable. Even clean, scanned documents of the same category have all sorts of density and skew anomalies that get misinterpreted. You'll pull your hair out trying to account for edge cases and never get the results you need even with numerous adjustments and model retraining on errors.

Flash 2.5 or 3 with thinking gave the best results.

reply
sixtyj
2 minutes ago
[-]
Thanks. I was surprised that Tesseract had recognized poorly scanned magazines and with some Python library I was able to transcribe two-columns layout with almost no errors.

Tesseract is a cheap solution as it doesn’t touch any LLM.

For invoices, Gemini flash is really good, for sure, and you receive “sorted” data as well. So definitely thumbs up. I use it for transcription of difficult magazine layout.

I think that for such legally problematic usage as companies don’t like to share financial data with Google, it is be better to use a local model.

Ollama or HuggingFace has a lot of them.

reply
hersko
6 hours ago
[-]
I have a flow where i extract text from a pdf with pdf-parse and then feed that to an ai for data extraction. If that fails i convert it to a png and send the image for data extraction. This works very well and would presumably be far cheaper as i'm generally sending text to the model instead of relying on images. Isn't just sending the images for ocr significantly more expensive?
reply
unrahul
2 hours ago
[-]
I have seen this flow in what people in some startups call "Agentic OCR", its essentially a control flow that is coded that tries pdf-parse first or a similar non expensive approach, and if it fails a threshold then use screenshot to text extraction.
reply
saaaaaam
5 hours ago
[-]
There was an interesting discussion on here a couple of months back about images vs text, driven by this article: https://www.seangoedecke.com/text-tokens-as-image-tokens/

Discussion is here: https://news.ycombinator.com/item?id=45652952

reply
trollbridge
5 hours ago
[-]
I always render an image and OCR that so I don’t get odd problems from invisible text and it also avoids being affected by anything for SEO.
reply
mimim1mi
6 hours ago
[-]
By definition, OCR means optical character recognition. It depends on the contents of the PDF what kind of extraction methodology can work. Often some available PDFs are just scans of printed documents or handwritten notes. If machine readable text is available your approach is great.
reply
sgc
6 hours ago
[-]
How does this compare to dots.ocr? I got fantastic results when I tested dots.

https://github.com/rednote-hilab/dots.ocr

reply
mjrpes
5 hours ago
[-]
Ocrbase is CUDA only while dots.ocr uses vLLM, so should support ROCm/AMD cards?
reply
actionfromafar
4 hours ago
[-]
How about CPU?
reply
constantinum
4 hours ago
[-]
What matters most is how well OCR and structured data extraction tools handle documents with high variation at production scale. In real workflows like accounting, every invoice, purchase order, or contract can look different. The extraction system must still work reliably across these variations with minimal ongoing tweaks.

Equally important is how easily you can build a human-in-the-loop review layer on top of the tool. This is needed not only to improve accuracy, but also for compliance—especially in regulated industries like insurance.

Other tools in this space:

LLMWhisperer/Unstract(AGPL)

Reducto

Extend Ai

LLamaparse

Docling

reply
cess11
1 hour ago
[-]
Why is 12GB+ VRAM a requirement? The OCR model looks kind of small, https://huggingface.co/PaddlePaddle/PaddleOCR-VL/tree/main, so I'm assuming it is some processing afterwards it would be used for.
reply
adammajcher
28 minutes ago
[-]
fixed
reply
mechazawa
6 hours ago
[-]
Is only bun supported or also regular node?
reply
adammajcher
38 minutes ago
[-]
it's bun first because of performance
reply