Nowadays it’s easier to just take lots of shots and fiddle with the setting and do bracketing and such. But I maintain something important was lost by the move to automatic cameras.
You can approximate the same limitation on digital cameras by simply using a very small SD card.
I'm being a little hyperbolic, but it really seems like, for a non-insignificant portion of the population, that will be true.
Inserting user's mates was a problem in 2006.
If I ever find a good moving prop like a small fan, maybe I'll also re-shoot new previews to demonstrate how shutter speed affects moving objects.
Now, I'm just not sure how would one simulate a running fan with a picture. While for a static image you can have separated foreground and background and then apply effects for simulation (I know iPhone HEIC images have this property), for moving images you have to simulate the blur and the stillness, which is probably more difficult in terms of coding.
I'm sure that image nerds would poke holes in it, but it seems to work pretty much exactly the way it does IRL.
The noise at high ISO is where it can get specific. Some manufacturers make cameras that actually do really well, at high ISO, and high shutter speed. This seems to reproduce a consumer DSLR.
Even on old, entry-level APS-C cameras, ISO1600 is normally very usable. What is rendered here at ISO1600 feels more like the "get the picture at any cost" levels of ISO, which on those limited cameras would be something like ISO6400+.
Heck, the original pictures (there is one for each aperture setting) are taken at ISO640 (Canon EOS 5D MarkII at 67mm)!
(Granted, many are too allergic to noise and end up missing a picture instead of just taking the noisy one which is a shame, but that's another story entirely.)
The amount and appearance of noise also heavily depends on whether you're looking at a RAW image before noise processing or a cooked JPEG. Noise reduction is really good these days but you might be surprised by what files from even a modern camera look like before any processing.
That said, I do think the simulation here exaggerates the effect of noise for clarity. (It also appears to be about six years old.)
Yes, this simulation exaggerates a lot. Either that, or contains a tiny crop of a larger image.
I do feel (image nerding now) that its shutter/ISO visual for showing the image over/under-exposed is not quite correct. It appears they show incorrect exposure by taking the "correct" image and blend (multiply) with either white or blend with black (on the other end of the exposure spectrum) to produce the resulting image.
I suppose I am expecting something more like "levels" that pushes all the pixels to white (or black) until they are forced to clip. (But maybe I am too trained in photo-editing tools and expect the film to behave in the same way.)
Very limited camera choices, though.
I'm interested to see how the roll turns out - gave it for development the other day, had a good laugh with the employees though.
I now have a mnemonic for it: Blor - a (somewhat) portmanteau of Blur and low. So low aperture = blur.
Edit for clarification: I mean low number (2 vs 32) = blur
Unfortunately the lower number actually means bigger aperture.
With my mnemonic, I say low *number = blur
I should have been more specific
Denominator, not numerator. That's why larger number = smaller aperture.
But photographers generally just say "f2", meaning an aperture value of two set on the dial of the camera/lens. It's one stop faster (twice as much light) as f/2.8. It'll give you a relatively shallow depth of field, but not as shallow as e.g. f/1.4.
The smaller, i.e. the closest to an ideal pinhole camera, the wider the depth of field is. A an ideal pinhole camera has infinite depth of field.
Unfortunately the aperture f numbers are the wrong way round; larger numbers correspond to smaller diameters.
It all matters.